251 research outputs found

    MatrixVT: Efficient Multi-Camera to BEV Transformation for 3D Perception

    Full text link
    This paper proposes an efficient multi-camera to Bird's-Eye-View (BEV) view transformation method for 3D perception, dubbed MatrixVT. Existing view transformers either suffer from poor transformation efficiency or rely on device-specific operators, hindering the broad application of BEV models. In contrast, our method generates BEV features efficiently with only convolutions and matrix multiplications (MatMul). Specifically, we propose describing the BEV feature as the MatMul of image feature and a sparse Feature Transporting Matrix (FTM). A Prime Extraction module is then introduced to compress the dimension of image features and reduce FTM's sparsity. Moreover, we propose the Ring \& Ray Decomposition to replace the FTM with two matrices and reformulate our pipeline to reduce calculation further. Compared to existing methods, MatrixVT enjoys a faster speed and less memory footprint while remaining deploy-friendly. Extensive experiments on the nuScenes benchmark demonstrate that our method is highly efficient but obtains results on par with the SOTA method in object detection and map segmentation task

    MegDet: A Large Mini-Batch Object Detector

    Full text link
    The improvements in recent CNN-based object detection works, from R-CNN [11], Fast/Faster R-CNN [10, 31] to recent Mask R-CNN [14] and RetinaNet [24], mainly come from new network, new framework, or novel loss design. But mini-batch size, a key factor in the training, has not been well studied. In this paper, we propose a Large MiniBatch Object Detector (MegDet) to enable the training with much larger mini-batch size than before (e.g. from 16 to 256), so that we can effectively utilize multiple GPUs (up to 128 in our experiments) to significantly shorten the training time. Technically, we suggest a learning rate policy and Cross-GPU Batch Normalization, which together allow us to successfully train a large mini-batch detector in much less time (e.g., from 33 hours to 4 hours), and achieve even better accuracy. The MegDet is the backbone of our submission (mmAP 52.5%) to COCO 2017 Challenge, where we won the 1st place of Detection task

    EqCo: Equivalent Rules for Self-supervised Contrastive Learning

    Full text link
    In this paper, we propose a method, named EqCo (Equivalent Rules for Contrastive Learning), to make self-supervised learning irrelevant to the number of negative samples in InfoNCE-based contrastive learning frameworks. Inspired by the InfoMax principle, we point that the margin term in contrastive loss needs to be adaptively scaled according to the number of negative pairs in order to keep steady mutual information bound and gradient magnitude. EqCo bridges the performance gap among a wide range of negative sample sizes, so that we can use only a few negative pairs (e.g. 16 per query) to perform self-supervised contrastive training on large-scale vision datasets like ImageNet, while with almost no accuracy drop. This is quite a contrast to the widely used large batch training or memory bank mechanism in current practices. Equipped with EqCo, our simplified MoCo (SiMo) achieves comparable accuracy with MoCo v2 on ImageNet (linear evaluation protocol) while only involves 4 negative pairs per query instead of 65536, suggesting that large quantities of negative samples might not be a critical factor in InfoNCE loss
    • …
    corecore